SMT-based Counterexample Generation for Markov Chains

Bettina Braitling¹ Ralf Wimmer¹ Bernd Becker¹
Nils Jansen² Erika Ábrahám²

¹Computer Architecture
Albert-Ludwigs-University Freiburg, Germany

²Software Modeling and Verification
RWTH Aachen, Germany

ROCKS Workshop
March 27th, 2011
Motivation

- Complex (embedded) systems everywhere:

- Correct behaviour has to be ensured.
- Verification is needed.
 - Counterexamples
 - Bounded Model Checking (BMC)
- Some systems have probabilistic elements.
 - Stochastic Bounded Model Checking
Table of Contents

1. Motivation

2. Foundations
 - Stochastic Models
 - Counterexample

3. Counterexample Generation
 - Previous Approaches
 - SMT-based Stochastic BMC (SSBMC)
 - Counterexamples for Markov Reward Models

4. Experimental Results

5. Conclusion & Outlook
A Discrete-Time Markov Chain (DTMC)

$M = (S, s_I, P, L)$ consists of

- S: finite set of states with initial state s_I,
- $P : S \times S \rightarrow [0, 1]$: matrix of transition probabilities,
- $L : S \rightarrow 2^{AP}$: labeling function.
A Markov Reward Model (MRM) \((M, R)\) consists of a DTMC \(M = (S, s_I, P, L)\) and a reward function \(R : S \rightarrow \mathbb{R}\).
Critical state s_3.
Should be reached with a probability of at most 0.08:

$$\mathcal{P}_{\leq 0.08}(\top \mathcal{U} s_3)$$
Critical state s_3.
Should be reached with a probability of at most 0.08:

\[P_{\leq 0.08}(\top U s_3) \]

Does this property hold?
Given: A DTMC M and a PCTL-property $\varphi = \mathcal{P}_{\leq p}(aUb)$.
Given: A DTMC M and a PCTL-property $\varphi = \Pr_{\leq p}(aUb)$.

- An evidence is a finite path $\pi = s_0, s_1, \ldots, s_n$ with $s_0 = s_i$ and $\pi \models aUb$. π is not a prefix of another evidence.

 π has the probability $\Pr(\pi) = \prod_{i=0}^{n-1} P(s_i, s_{i+1})$.
Given: A DTMC M and a PCTL-property $\varphi = P_{\leq p}(aUb)$.

- An **evidence** is a finite path $\pi = s_0, s_1, \ldots, s_n$ with $s_0 = s_i$ and $\pi \models aUb$. π is not a prefix of another evidence.

 π has the probability $\Pr(\pi) = \prod_{i=0}^{n-1} P(s_i, s_{i+1})$.

- A **counterexample** is a set C of evidences such that $\Pr(C) > p$.

B. Braitling (University of Freiburg) SMT-based Counterexample Generation 03/27/2011 5 / 17
Given: An MRM M and a PCTL-property $\varphi = \mathcal{P}_\leq_p (aU^I b)$, $I \subseteq \mathbb{R}$.
Counterexample for MRMs (1)

Given: An MRM M and a PCTL-property $\varphi = \mathcal{P}_{\leq \rho}(aU^J b)$, $J \subseteq \mathbb{R}$.

- An **evidence** is a finite path $\pi = s_0, s_1, \ldots, s_n$ with $s_0 = s_I$ and $\pi \models aUb$. π is not a prefix of another evidence.

 π has the probability $\Pr(\pi) = \prod_{i=0}^{n-1} P(s_i, s_{i+1})$.

- A **counterexample** is a set C of evidences such that $\Pr(C) > \rho$.

B. Braitling (University of Freiburg)
SMT-based Counterexample Generation
Counterexample for MRMs (1)

Given: An MRM M and a PCTL-property $\varphi = \mathcal{P}_{\leq p}(aUb)$, $I \subseteq \mathbb{R}$.

- An evidence is a finite path $\pi = s_0, s_1, \ldots, s_n$ with $s_0 = s_I$ and $\pi \models aUb$. π is not a prefix of another evidence.

 π has the probability $\Pr(\pi) = \prod_{i=0}^{n-1} P(s_i, s_{i+1})$.

 π has the reward $\Re(\pi) = \sum_{i=0}^{n-1} R(s_i)$ and $\Re(\pi) \in I$.

- A counterexample is a set C of evidences such that $\Pr(C) > p$.
Critical state s_3.
Should be reached with a probability of at most 0.08, rewards ≤ 2:

$$P_{\leq 0.08}(\top U^{[0,2]} s_3)$$

Does this property hold?
1 Motivation

2 Foundations
 • Stochastic Models
 • Counterexample

3 Counterexample Generation
 • Previous Approaches
 • SMT-based Stochastic BMC (SSBMC)
 • Counterexamples for Markov Reward Models

4 Experimental Results

5 Conclusion & Outlook
Previous Approaches

Explicit:

Symbolic:
Previous Approaches

Explicit:
- Shortest path:
 - Aljazzar & Leue, 2010
 - Han, Katoen & Damman, 2009
- Regular expressions:
 - Han, Katoen, & Damman, 2009
- Strongly Connected Components (SCCs):
 - Andrés, D’Argenio & van Rossum, 2008
 - Ábrahám, Jansen, Wimmer, Katoen & Becker, 2010

Symbolic:
Previous Approaches

Explicit:

- Shortest path:
 - Aljazzar & Leue, 2010
 - Han, Katoen & Damman, 2009

- Regular expressions:
 - Han, Katoen, & Damman, 2009

- Strongly Connected Components (SCCs):
 - Andrés, D’Argenio & van Rossum, 2008
 - Ábrahám, Jansen, Wimmer, Katoen & Becker, 2010

Symbolic:

- Shortest path:
 - Günther, Schuster & Siegle, 2010

- Stochastic BMC (SBMC):
 - Wimmer, Braitling & Becker, 2009
Table of Contents

1. **Motivation**

2. **Foundations**
 - Stochastic Models
 - Counterexample

3. **Counterexample Generation**
 - Previous Approaches
 - SMT-based Stochastic BMC (SSBMC)
 - Counterexamples for Markov Reward Models

4. **Experimental Results**

5. **Conclusion & Outlook**
Consider transition probabilities during search:

$$I(s_0) \land \bigwedge_{i=0}^{k-1} T_{\text{SMT}}(s_i, s_{i+1}, \hat{p}_i) \land L_b(s_k) \land \left(\sum_{i=0}^{k-1} \hat{p}_i \geq \log p_t \right)$$

- Solved by an SMT-solver.
- Solution corresponds to an evidence π of length k, $\Pr(\pi) \geq p_t$.
- Binary search by re-adjusting p_t.
\[n \leftrightarrow ((x \wedge \hat{p} = \log p_2) \lor (\neg x \wedge \hat{p} = \log p_1)) \]
SMT-based Stochastic BMC (SSBMC) (3)

- Search for new path
 - \(p_i := \frac{1}{2} p_t \) or \(k := k + 1 \)
 - Path found?
 - Yes
 - Probability
 - Mass
 - No
 - Big enough?
 - Yes
 - Finished
 - No
SMT allows us to consider rewards:

\[
I(s_0) \land \bigwedge_{i=0}^{k-1} T_{\text{SMT}}(s_i, s_{i+1}, \hat{p}_i) \land L_b(s_k) \land \left(\sum_{i=0}^{k-1} \hat{p}_i \geq \log p_t \right) \\
\land \bigwedge_{i=0}^{k-1} R(s_i, \hat{r}_i) \land \left(\min(J) \leq \sum_{i=0}^{k-1} \hat{r}_i \leq \max(J) \right)
\]

Only paths with rewards within interval J are regarded.
Experimental Results

Comparison between SSBMC and SBMC.

Benchmarks:
- Contract signing protocol
- Crowds protocol
- Leader election protocol
- Self-stabilizing minimal spanning tree algorithm

Setup:
- Underlying solvers: Yices (SMT-solver), Minisat (SAT-solver).
- Dual Core AMD Opteron with 2.4 GHz per core, 4 GB RAM.
- Time limit: 2 h, memory limit: 2 GB
Computation Time for Contract, Crowds & Leader

- SSBMC
- SBMC

models:
- contract05_03
- contract05_08
- contract06_03
- contract06_06
- contract07_03
- crowdso2_05
- crowdso2_06
- crowdso2_07
- crowdso15_05
- crowdso15_06
- leadero3_04
- leadero3_08
- leadero4_04
- leadero4_06
- leadero5_04

(time in s)
Memory Consumption for Contract, Crowds & Leader

SSBMC SBMC

models

memory (MB)

contract05_03 contract05_08 contract06_03 contract06_06 contract07_03 crowds02_05 crowds02_06 crowds02_07 crowds15_05 crowds15_06 leader03_04 leader03_08 leader04_04 leader04_06 leader05_04
Further Results

Minimal Spanning Tree:

<table>
<thead>
<tr>
<th>Name</th>
<th>p</th>
<th>k_{max}</th>
<th>SSBMC</th>
<th>SBMC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#paths</td>
<td>time</td>
<td>mem.</td>
<td>#paths</td>
</tr>
<tr>
<td>mst15</td>
<td>0.049</td>
<td>15</td>
<td>4531</td>
<td>98.58</td>
</tr>
<tr>
<td>mst16</td>
<td>0.047</td>
<td>16</td>
<td>4648</td>
<td>107.27</td>
</tr>
<tr>
<td>mst18</td>
<td>0.036</td>
<td>18</td>
<td>4073</td>
<td>109.26</td>
</tr>
<tr>
<td>mst20</td>
<td>0.034</td>
<td>20</td>
<td>452</td>
<td>19.57</td>
</tr>
</tbody>
</table>
Further Results

- **Minimal Spanning Tree:**

<table>
<thead>
<tr>
<th>Name</th>
<th>p</th>
<th>k_{max}</th>
<th>#paths</th>
<th>time</th>
<th>mem.</th>
<th>#paths</th>
<th>time</th>
<th>mem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mst15</td>
<td>0.049</td>
<td>15</td>
<td>4531</td>
<td>98.58</td>
<td>148.82</td>
<td>> 600000</td>
<td>– TO –</td>
<td></td>
</tr>
<tr>
<td>mst16</td>
<td>0.047</td>
<td>16</td>
<td>4648</td>
<td>107.27</td>
<td>158.25</td>
<td>> 600000</td>
<td>– MO –</td>
<td></td>
</tr>
<tr>
<td>mst18</td>
<td>0.036</td>
<td>18</td>
<td>4073</td>
<td>109.26</td>
<td>164.24</td>
<td>> 600000</td>
<td>– MO –</td>
<td></td>
</tr>
<tr>
<td>mst20</td>
<td>0.034</td>
<td>20</td>
<td>452</td>
<td>19.57</td>
<td>58.21</td>
<td>> 500000</td>
<td>– TO –</td>
<td></td>
</tr>
</tbody>
</table>

- **SSBMC for MRMs:**

<table>
<thead>
<tr>
<th>Model</th>
<th>k_{max}</th>
<th>p</th>
<th>#paths</th>
<th>time</th>
<th>mem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>leader03.02</td>
<td>25</td>
<td>0.06226</td>
<td>360</td>
<td>1.00</td>
<td>29.61</td>
</tr>
<tr>
<td>leader04.02</td>
<td>25</td>
<td>0.21875</td>
<td>37376</td>
<td>912.11</td>
<td>1110.54</td>
</tr>
<tr>
<td>leader05.02</td>
<td>23</td>
<td>0.14771</td>
<td>4840</td>
<td>40.16</td>
<td>163.06</td>
</tr>
<tr>
<td>leader06.02</td>
<td>25</td>
<td>0.12378</td>
<td>32448</td>
<td>907.33</td>
<td>1360.11</td>
</tr>
</tbody>
</table>
Table of Contents

1 Motivation

2 Foundations
 - Stochastic Models
 - Counterexample

3 Counterexample Generation
 - Previous Approaches
 - SMT-based Stochastic BMC (SSBMC)
 - Counterexamples for Markov Reward Models

4 Experimental Results

5 Conclusion & Outlook
Conclusion & Outlook

Conclusion:
- SMT for Stochastic BMC.
- Find paths with higher probabilities sooner.
- Counterexamples for MRMs.
- Promising results.

Outlook:
- Optimize the search for paths with higher probabilities.
- Additional features: Loop detection, bisimulation minimization, transition rewards, etc.
- More benchmarks, especially MRMs.
Conclusion & Outlook

Conclusion:
- SMT for Stochastic BMC.
- Find paths with higher probabilities sooner.
- Counterexamples for MRMs.
- Promising results.

Outlook:
- Optimize the search for paths with higher probabilities.
- Additional features: Loop detection, bisimulation minimization, transition rewards, ...
- More benchmarks, especially MRMs.